

Scott Christensen

- Stillwater, Minnesota, head coach for 37 years.
- 1997 National High School Champions (The Harrier).
- Four Stillwater alumni have broken 4:00 in the mile since 2003.
- Fourteen year USATF Level 2 Lead Instructor in Endurance. Past 5 years with USTFCCCA.
- USA World Cross Country Team Leader 2003 and 2008.

29-Jan-20

Outline of Pick up the Pace Presentation

- Speed in Training Theory
- Anaerobic Training Sequences and Schemes
- Anaerobic Training Techniques
- Conclusion

What If?

- You could only do three different workouts throughout the year for an 800 meter runner?
- You could only do three different workouts throughout the year for a 1600 meter runner?
- You could only do three different workouts throughout the year for 3200/5000 meter runner?

Do You Agree?

- 800: tempo run, $6 \times 200,6 \times 400$
- 1600: tempo run, $5 \times 1000,5 \times 600$
- 3200/5000: long run, $\mathrm{VVO}_{2 \text { maxi }} 8 \times 400$

Maxed Out Aerobic System

Racing is Anything but Even-Pace 2017 World Championship Men's 1500

Training Period - Perceived Intensity

The Components of the Training Microcycles

- The long run, tempo run, strength run, recovery run, and races are included within the 7-12 day microcycles.
- Microcycles also include training sessions of distinctively varied velocity/intensity paces that deliver significant energy chiefly through the anaerobic system.
- This is the multi-paced training scheme.

Why Divide Fast Anaerobic Running into Repeats?

- Intervals have short and incomplete rest.
- Repetition Runs are longer with more complete rest.
- Intervals = efficiency work
- Repetition Running= capacity work
- Work may be anaerobic or aerobic.
- Intensity is determined by rest period.
- Total workout volume can exceed race distance, but not individual bouts of work.

The 5 Levels of the Training Scheme that are Considered Anaerobic

- Strength Running (short bursts of resistance)
- Speed (30-60 meters)
- Speed Endurance (60-150 meters)
- Special Endurance 1 (150-300 meters)
- Special Endurance 2 (300-600 meters)

Regeneration Timeframe

24 hours

- Normal long runs, strength runs, recovery runs, moderate tempo runs, max speed sprints

48 hours

- Races, long runs plus, Speed Endurance, basic Special Endurance $1 \& 2$, strong tempo runs, VO_{2} max, LT runs

72 hours

- Long races, very strong Special Endurance 1 \& 2, very strong or long tempo runs
29-Jan-20 23

Workout Construction

- Aerobic workouts are mainly done with bouts of continuous runs.
- Anaerobic workouts are mainly done with bouts of interval or repetition runs
- Interval runs are work punctuated with periods of incomplete rest

Components of the Anaerobic Training Session

- Theme
- Extent
- Volume
- Intensity
- Ancillary
- Regeneration

General Prep Period Training Weeks 3 \& 4 of Season

- Sunday: 6 mi BR
- Monday: 4 mi TR
- Tuesday: 6 mi BR
- Wednesday: 8 mi LR
- Thursday: 7 * Hills +
- Friday: 7 mi RR
- Saturday: Rest 40 miles
- Sunday: 6 mi BR
- Monday: 3*1 mi @ $\mathrm{VO}_{2_{\text {max }}}+$
- Tuesday: 5 mi RR
- Wednesday: 7 mi BR
- Thursday: 9 mi LR
- Friday: 7 Hills +
- Saturday: 5 mi RR 44 miles

Specific Prep Period Training

- Day 1: 7 mi RR
- Day 2: 4.5 mi TR +
- Day 3: 6 x short hill repeats +
- Day 4: 8×350 meters + , Special Endurance 2
- Day 5: Race
- Day 6: 7 mi RR
- Day 7: 4×1600 meters at $\mathrm{VVO}_{2 \text { max }}$ pace +
- Day 8: 10 mile LR
- Day 9: 6×150 meters +, Special Endurance 1

60 miles this microcycle

Comp Period Training

- Day 1: 8 x flying 30 meters +
- Day 2: $2 \times 1 \mathrm{mi}$ at $\mathrm{VVO}_{2 \text { max }}+$
- Day 3: 5 mi RR
- Day 4: $3 \times 300+$, Special Endurance 1
- Day 5: 5 mi RR
- Day 6: 3 mi RR
- Day 7: Race
- Day 8: 6 mi LR
- Day 9: $3 \times 500+$, Special Endurance 2

40 miles this microcycle

Pre Comp Period Training

- Day 1: 7 mi BR
- Day 2: $4 \times$ long hill repeats +
- Day 3: 6 mi RR
- Day 4: 5×1000 meters at $\mathrm{vVO}_{2 \text { max }}$ pace +
- Day 5: 5 mi RR
- Day 6: Race
- Day 7: 12 mi LR
- Day 8: 10×400 (grass) Intensive Tempo +
- Day 9: 7 mi RR

55 miles this microcycle

Strength Run

- Greater applied force against resistance is the goal.
- Any running is strength work.
- Hills are the main target workout.
- 10 seconds, $35-45$ seconds, 3 minutes, 7 minutes bouts of work.
- 4 minute jog of incomplete recovery.
- Sets of 3-8.

Stillwater 30 Meter Fly Progression

	30 M $\max 9$	30 M $\mathrm{M} / \mathrm{S} 9$	30 M $\max 12$	30 M $\mathrm{M} / \mathrm{S} 12$	$\mathrm{M} / \mathrm{S} \%$ Change $9-12$
Watson	4.19 s	7.15	3.31 s	9.06	-19%
Hall	4.18 s	7.17	3.42 s	8.77	-18%
Blankenship	4.14 s	7.25	3.34 s	8.98	-19%
Stansbury	4.21 s	7.13	3.54 s	8.47	-16%

Speed Endurance Workout

- With a measuring wheel and can of spray paint, mark a dot on the track exactly 150 meters from the finish line.
- 2 mile very active warm-up.
- Extent of work is 6 * 150 meters on the track at max effort. Use a starting device.
- Rest is 4 minutes.
- Time goal is 97% of 400 meter speed.

Ex. 60 sec 400 runner (15 sec) divided by $.97=16$ seconds

- 3 mile easy run.

Special Endurance 1 Workout

- 2 mile active warm-up.
- Several very active strides.
- Extent of work is 2 sets of 3 repeats of 200 meters on the track.
- Time goal is 95% of 400 meter speed Ex 60 sec 4004 unner (30 sec) divide by $.95=32$ seconds
- Rest is incomplete at 3 min between repeats and 5 minutes between the sets.
- Sometimes you just have to run very hard.

Special Endurance 2

- 2 mile active warm-up.
- Several very fast strides.
- Extent of work is $8 * 400$ meters at near max date pace effort on the grass.
- Time goal is 92% of 400 meter speed.

Ex 60 sec 400 runner. Divide 60
by $.92=65$ seconds

- Rest is 4 minutes.
- 2 mile jog cool down. Stretch and elevate.

Anaerobic Type Distance Workouts

- 6 * 80 meter hills . Strength (Int Tempo)
- 5 * 90 meter strides
- Strength (Ext Tempo)
- 5 * 80 sec runs on grass
- Special Endurance 2
- 6 * 400 with 3 min rest
- Special Endurance 2
- 6 * 400 with 70 sec rest
- Special Endurance 2
- 10 * flying 30 meters with 3 min rest
- 2 * 3 * 300 with 3 min rest
- 6 * 45 sec runs with 2 min
rest
- 5 * 50 sec runs on grass
- Speed
- Special Endurance 1
- Special Endurance 1
- Special Endurance 1

Stillwater Case Study Athlete Profiling Data

- Max 30 meters [date]
- Max 30 meters [PR]
- 400 pace [date]
- 400 pace [PR]
- $\mathrm{VVO}_{2 \text { max }}$ pace [date]
- $\mathrm{VVO}_{2 \text { max }}$ pace [PR]
- 7000 pace [date]
- 7000 pace [PR]
- Racing Performances

$\mathrm{VO}_{2 \text { max, }}$ ECON, and Hydrogen Tolerance Factor Progression						
	$\begin{aligned} & 400 \\ & 9 \end{aligned}$	$\begin{aligned} & \hline 400 \\ & 12 \end{aligned}$	$\begin{aligned} & 3200 \\ & 9 \end{aligned}$	$\begin{aligned} & 3200 \\ & 12 \end{aligned}$	$\begin{aligned} & 7000 \\ & 9 \end{aligned}$	$\begin{aligned} & 7000 \\ & 12 \end{aligned}$
Krahn	51	49.3	8:58	8:55	23:10	21:48
Hall	59	51.1	9:44	9:09	23:48	22:21
Blankenship	60	49.2	9:58	9:08	23:58	22:34
J Watson	59	49.3	9:36	9:09	23:23	22:16
L Watson	60	50.3	9:33	9:08	23:33	22:08
Graham	61	51.6	10:08	9:09	24:25	22:11

Four-Year Lactate Tolerance, VVO2 max, and Economy Changes			
Hydrogen Tolerance 3200 Aerobic Capacity Economy Hyd Krahn -1% No change			
Hall	-12%	-5.9%	-6.2%
Blankenship	-18%	-8.3%	-5.8%
J Watson	-17%	-4.8%	-4.7%
L Watson	-17%	-4.3%	-6.1%
Graham	-16%	-8.9%	-9.1%

Testing for Anaerobic Speed Reserve (ASR)					
	30 M $\max 9$	30 M $\mathrm{m} / \mathrm{s} 9$	30 M $\max 12$	30 M $\mathrm{m} / \mathrm{s} 12$	$\mathrm{m} / \mathrm{s} \%$ Change 9.12
Krahn	3.34 s	8.98	3.31 s	9.06	-1%
Hall	4.18 s	7.17	3.42 s	8.77	-18%
Blankenship	4.14 s	7.25	3.34 s	8.98	-19%
Stevens	4.21 s	7.13	3.44 s	8.72	-18%

Last 8×100 Splits				
2016 Olympic Trials 1500 Meter Finals				
Centrowitz Andrews Blankenship 800 15.0 15.2 15.0 70.2 15.0 700 14.2 13.9 14.2 14.2 600 14.1 14.3 14.1 500 13.9 13.6 14.0 400 13.9 14.0 13.9 300 13.3 13.5 13.7 200 13.4 13.4 14.2 100 13.3 13.4 14.4 14.0				

Last 8×100 Splits Ben Blankenship 2007 \& 2016			
	2007 Juniors	2016 OT	\% Change
800	16.9	15.0	-12\%
700	16.8	14.2	-15\%
600	16.6	14.1	-15\%
500	15.8	14.0	-11\%
400	14.9	13.9	-7\%
300	14.5	13.7	-6\%
200	14.4	14.2	-1\%
100	14.3	14.4	+1\%

Last 8×100 Splits			
Ben Blankenship 2005 \& 2007			
	2005 State	2007 Juniors	$\%$ Change
800	17.6	16.9	-4%
700	17.5	16.8	-4%
600	17.4	16.6	-5%
500	17.7	15.8	-11%
400	16.9	14.9	-12%
300	16.3	14.5	-13%
200	16.4	14.4	-13%
100	16.4	14.3	-13%

Take-Home Points

1. Aerobic development is the main focus of cross country training. Anaerobic is still crucial.
2. However, do not wait to start fast work, just give lots of aerobic work between anaerobic efforts.
3. Encourage running strong on the harder days and gentle running on the easier days.
4. Avoid getting caught in too many "medium" efforts. Use lots of variety.
5. Do all of the various modalities of aerobic and anaerobic work and follow the scientific guidelines.
