Pick Up The Pace: Building Speed Into Distance Workouts

Scott Christensen

- Stillwater, Minnesota, head coach for 37 years.
- 1997 National High School Champions (*The Harrier*).
- Four Stillwater alumni have broken 4:00 in the mile since 2003.
- Fourteen year USATF Level 2 Lead Instructor in Endurance.
 Past 5 years with USTFCCCA.
- USA World Cross Country Team Leader 2003 and 2008.

"Never stray far from race pace"

Vern Gambetta USA

3

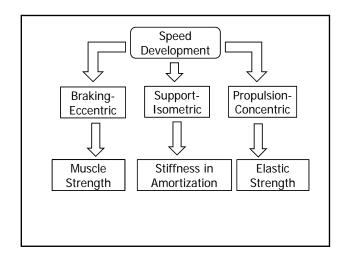
Outline of Pick up the Pace Presentation

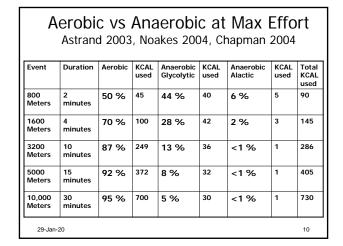
- Speed in Training Theory
- Anaerobic Training Sequences and Schemes
- Anaerobic Training Techniques
- Conclusion

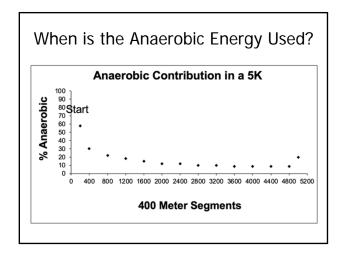
High Intensity Involves a Commitment to Work Hard

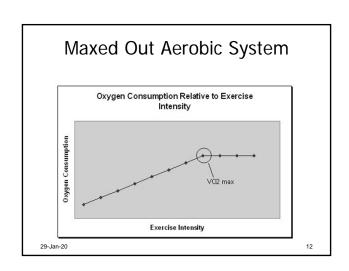
What If?

- You could only do three different workouts throughout the year for an 800 meter runner?
- You could only do three different workouts throughout the year for a 1600 meter runner?
- You could only do three different workouts throughout the year for 3200/5000 meter runner?

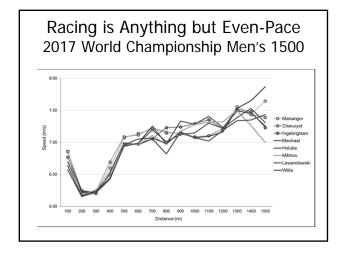

Do You Agree?

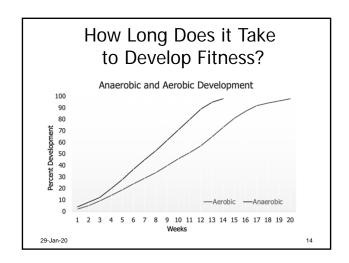

- 800: tempo run, 6 x 200, 6 x 400
- 1600: tempo run, 5 x 1000, 5 x 600
- 3200/5000: long run, vVO_{2 max}, 8 x 400


29-Jan-20


The Primary Physical **Performance Components**

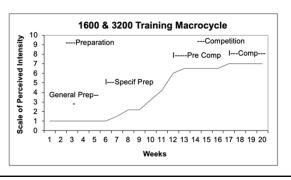
- Strength
- Speed → max and race specific
- Flexibility
- Coordination
- Endurance





Scott Christensen - Pick Up The Pace: Building Speed Into Distance Workouts

Mold Anaerobic Development Phases into Specific Training Periods


General Prep – 4-10 weeks
Little anaerobic work
Specific Prep - 4 weeks
Introduce anaerobic work
Pre Comp – 4 weeks
Interval anaerobic work
Comp – 3 weeks

Repetition anaerobic work

15

Training Period - Perceived Intensity

The Multi-Paced Distance Training Scheme

- Structured on 7-12 day microcycles for distance events based on race length and time of year.
- Forget most 7 day weeks.
- Training groups: novice, emerging, and experienced.
- Use Sundays to fit the group.
- Theoretically, one day off every 21 day until competition period.

29-Jan-20 17

The Components of the Training Microcycles

- The long run, tempo run, strength run, recovery run, and races are included within the 7-12 day microcycles.
- Microcycles also include training sessions of distinctively varied velocity/intensity paces that deliver significant energy chiefly through the anaerobic system.
- This is the multi-paced training scheme.

Why Divide Fast Anaerobic Running into Repeats?

- Intervals have short and incomplete rest.
- Repetition Runs are longer with more complete rest.
- Intervals = efficiency work
- Repetition Running= capacity work
- Work may be anaerobic or aerobic.
- Intensity is determined by rest period.
- Total workout volume can exceed race distance, but not individual bouts of work.

Workout Construction

- Aerobic workouts are mainly done with bouts of continuous runs.
- Anaerobic workouts are mainly done with bouts of interval or repetition runs
- Interval runs are work punctuated with periods of incomplete rest

The 5 Levels of the Training Scheme that are Considered Anaerobic

- Strength Running (short bursts of resistance)
- Speed (30-60 meters)
- Speed Endurance (60-150 meters)
- Special Endurance 1 (150-300 meters)
- Special Endurance 2 (300-600 meters)

Components of the Anaerobic **Training Session**

- Theme
- Extent
- Volume
- Intensity
- Ancillary
- Regeneration

Regeneration Timeframe

24 hours

· Normal long runs, strength runs, recovery runs, moderate tempo runs, max speed sprints

48 hours

· Races, long runs plus, Speed Endurance, basic Special Endurance 1 & 2, strong tempo runs, VO_{2 max.} LT runs

 Long races, very strong Special Endurance 1 & 2, very strong or long tempo runs

General Prep Period Training Weeks 3 & 4 of Season

■ Sunday: 6 mi BR

■ Monday: 4 mi TR

■ Tuesday: 6 mi BR

■ Wednesday: 8 mi LR

■ Thursday: 7 * Hills +

■ Friday: 7 mi RR

Saturday: Rest

40 miles

■ Sunday: 6 mi BR

■ Monday: 3 * 1 mi @ VO_{2 max} +

■ Tuesday: 5 mi RR

■ Wednesday: 7 mi BR

■ Thursday: 9 mi LR

■ Friday: 7 Hills +

■ Saturday: 5 mi RR

44 miles

Specific Prep Period Training

- Day 1: 7 mi RR
- Day 2: 4.5 mi TR +
- Day 3: 6 x short hill repeats +
- Day 4: 8 x 350 meters +, Special Endurance 2
- Day 5: Race
- Day 6: 7 mi RR
- Day 7: 4 x 1600 meters at vVO_{2 max} pace +
- Day 8: 10 mile LR
- Day 9: 6 x 150 meters +, Special Endurance 1 60 miles this microcycle

29-Jan-20

05

Pre Comp Period Training

- Day 1: 7 mi BR
- Day 2: 4 x long hill repeats +
- Day 3: 6 mi RR
- Day 4: 5 x 1000 meters at vVO_{2 max} pace +
- Day 5: 5 mi RR
- Day 6: Race
- Day 7: 12 mi LR
- Day 8: 10 x 400 (grass) Intensive Tempo +
- Day 9: 7 mi RR

55 miles this microcycle

Comp Period Training

- Day 1: 8 x flying 30 meters +
- Day 2: 2 x 1 mi at vVO_{2 max} +
- Day 3: 5 mi RR
- Day 4: 3 x 300 +, Special Endurance 1
- Day 5: 5 mi RR
- Day 6: 3 mi RR
- Day 7: Race
- Day 8: 6 mi LR
- Day 9: 3 x 500 +, Special Endurance 2

40 miles this microcycle

29-Jan-20

27

Strength Run

- Greater applied force against resistance is the goal.
- Any running is strength work.
- Hills are the main target workout.
- 10 seconds, 35-45 seconds, 3 minutes, 7 minutes bouts of work.
- 4 minute jog of incomplete recovery.
- Sets of 3-8.

Max Speed Work

- 3 mi wup
- 6-8 x 30 meters on the fly on the track
- 3 min rest between each repeat
- 4 mile continuous run
- Cool down

29-Jan-20

29

Stillwater 30 Meter Fly Progression

	30 M max 9	30 M M/S 9	30 M max 12	30 M M/S 12	M/S % Change 9-12
Watson	4.19s	7.15	3.31s	9.06	-19%
Hall	4.18s	7.17	3.42s	8.77	-18%
Blankenship	4.14s	7.25	3.34s	8.98	-19%
Stansbury	4.21s	7.13	3.54s	8.47	-16%

Speed Endurance Workout

- With a measuring wheel and can of spray paint, mark a dot on the track exactly 150 meters from the finish line.
- 2 mile very active warm-up.
- Extent of work is 6 * 150 meters on the track at max effort. Use a starting device.
- Rest is 4 minutes.
- Time goal is 97% of 400 meter speed. Ex. 60 sec 400 runner (15 sec) divided by .97 = 16 seconds
- 3 mile easy run.

Special Endurance 1 Workout

- 2 mile active warm-up.
- Several very active strides.
- Extent of work is 2 sets of 3 repeats of 200 meters on the track.
- Time goal is 95% of 400 meter speed Ex 60 sec 400 4unner (30 sec) divide by .95 = 32 seconds
- Rest is incomplete at 3 min between repeats and 5 minutes between the sets.
- Sometimes you just have to run very hard.
- 2 mile ina

Special Endurance 2

- 2 mile active warm-up.
- Several very fast strides.
- Extent of work is 8 * 400 meters at near max date pace effort on the grass.
- Time goal is 92% of 400 meter speed. Ex 60 sec 400 runner. Divide 60 by .92 = 65 seconds
- Rest is 4 minutes.
- 2 mile jog cool down. Stretch and elevate.

Anaerobic Type Distance Workouts

- 6 * 80 meter hills
- 5 * 90 meter strides
- 5 * 80 sec runs on grass
- 6 * 400 with 3 min rest
- 6 * 400 with 70 sec rest
- 10 * flying 30 meters with 3 min rest
- 2 * 3 * 300 with 3 min rest
- 6 * 45 sec runs with 2 min
- 5 * 50 sec runs on grass

- Strength (Int Tempo)
- Strength (Ext Tempo)
- Special Endurance 2
- Special Endurance 2
- Special Endurance 2
- Speed
- Special Endurance 1
- Special Endurance 1
- Special Endurance 1

Stillwater Case Study Athlete Profiling Data

- Max 30 meters [date]
- Max 30 meters [PR]
- 400 pace [date]
- 400 pace [PR]
- vVO_{2 max} pace [date]
- vVO_{2 max} pace [PR]
- 7000 pace [date]
- 7000 pace [PR]
- Racing Performances

${ m VO_{2~max,}}$ ECON, and Hydrogen Tolerance Factor Progression

	400	400	3200	3200	7000	7000
	9	12	9	12	9	12
Krahn	51	49.3	8:58	8:55	23:10	21:48
Hall	59	51.1	9:44	9:09	23:48	22:21
Blankenship	60	49.2	9:58	9:08	23:58	22:34
J Watson	59	49.3	9:36	9:09	23:23	22:16
L Watson	60	50.3	9:33	9:08	23:33	22:08
Graham	61	51.6	10:08	9:09	24:25	22:11

Four-Year Lactate Tolerance, vVO_{2 max}, and Economy Changes

	400	3200	7000
	Hydrogen Tolerance	Aerobic Capacity	Economy
Krahn	-1%	No change	-6.1%
Hall	-12%	-5.9%	-6.2%
Blankenship	-18%	-8.3%	-5.8%
J Watson	-17%	-4.8%	-4.7%
L Watson	-17%	-4.3%	-6.1%
Graham	-16%	-8.9%	-9.1%

Testing for Anaerobic Speed Reserve (ASR)

	30 M max 9	30 M m/s 9	30 M max 12	30 M m/s 12	m/s % Change 9-12
Krahn	3.34s	8.98	3.31s	9.06	-1%
Hall	4.18s	7.17	3.42s	8.77	-18%
Blankenship	4.14s	7.25	3.34s	8.98	-19%
Stevens	4.21s	7.13	3.44s	8.72	-18%

Anaerobic Speed Reserve (ASR) Cross-Sectional Comparison

	30 M	vVO _{2 max}	ASR	Runner
	m/s 11	m/s 11	Ratio 11	Туре
Krahn	9.02	5.92	1.52	2
Hall	8.57	5.76	1.48	1
Blankenship	8.64	5.80	1.48	1
Stevens	8.72	5.65	1.54	2

This is What is Supposed to Happen

Last 8 x 100 Splits 2016 Olympic Trials 1500 Meter Finals

	1			
	Centrowitz	Andrews	Blankenship	Manzano
800	15.0	15.2	15.0	15.0
700	14.2	13.9	14.2	14.2
600	14.1	14.3	14.1	14.3
500	13.9	13.6	14.0	13.8
400	13.9	14.0	13.9	14.0
300	13.3	13.5	13.7	13.6
200	13.4	13.4	14.2	14.0
100	13.3	13.4	14.4	14.7

Last 8 x 100 Splits Ben Blankenship 2007 & 2016

Berr Blankerieriip 2007 & 2010				
	2007 Juniors	2016 OT	% Change	
800	16.9	15.0	-12%	
700	16.8	14.2	-15%	
600	16.6	14.1	-15%	
500	15.8	14.0	-11%	
400	14.9	13.9	-7%	
300	14.5	13.7	-6%	
200	14.4	14.2	-1%	
100	14.3	14.4	+1%	

Last 8 x 100 Splits Ben Blankenship 2005 & 2007

Borr Blarittorioriip 2000 & 2007					
	2005 State	2007 Juniors	% Change		
800	17.6	16.9	-4%		
700	17.5	16.8	-4%		
600	17.4	16.6	-5%		
500	17.7	15.8	-11%		
400	16.9	14.9	-12%		
300	16.3	14.5	-13%		
200	16.4	14.4	-13%		
100	16.4	14.3	-13%		

Take-Home Points

- 1. Aerobic development is the main focus of cross country training. Anaerobic is still crucial.
- 2. However, do not wait to start fast work, just give lots of aerobic work between anaerobic efforts.
- 3. Encourage running strong on the harder days and gentle running on the easier days.
- 4. Avoid getting caught in too many "medium" efforts. Use lots of variety.
- 5. Do all of the various modalities of aerobic and anaerobic work and follow the scientific guidelines.

