Key Factors in Developing Better High Jumpers

John Rembao D1 Athletics

Program Considerations

- · Primary components of your program
 - o Skill (technique)
 - Speed (accelerations & running paces)
 - o Strength (weights, plyometrics, and core
 - o Stamina (volume management in each area above)
 - Suppleness (static and dynamic)

High Jump Phases

1. Approach

2. Take-off

3. Clearance

Keys to a Good Approach

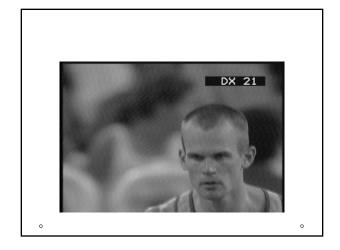
- Posture
- Horizontal Velocity
- · Lowering Center of Mass

Posture

- · Line from head to toe during acceleration
- Shoulders on top of hips posture during approach
- Posture over penultimate vertical
- Good Posture Developed Through
 - Awareness
 - o Core Strength

Horizontal Velocity

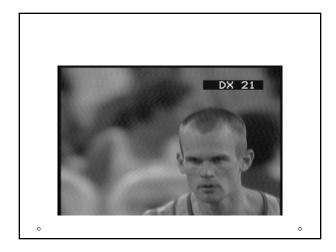
- Rhythm of run-up
 As the athlete approaches the bar their rhythm fidecrease and ground contact times vary slightly
 https://www.youtube.com/watch?v=3tEsxEkfR-Y
- Tempo (speed) of run-up


 A fast approach can help the athlete to exert a larger vertical force on the ground during the takeoff phase (Dapena, 1992)
- Creating Horizontal Velocity Can Be Trained Through
 - Plyometrics and Strength Training
 - Single Leg Support Exercises
- o Core Strengthening Exercises

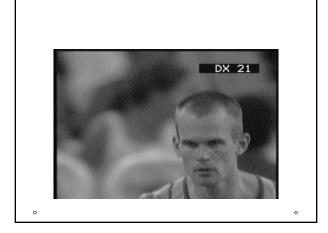
Lower Center of Mass

- "In the last two or three strides of the run-up the athlete should gradually lower the hips. It must be stressed here that this lowering of the hips has to be done without a significant loss of running speed" (Dapena, 1992)
 - Lower CoM through lean
 - Lower CoM through bridging over foot
- Lowering Center of Mass Requires
 - o Leg strength
 - o Strong Running Mechanics
 - o Good Posture

.


O

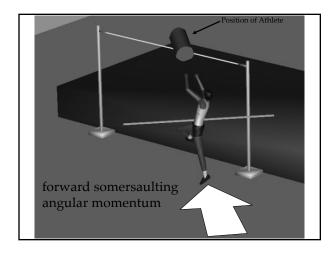
Traits of Good Approach

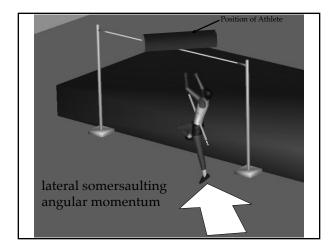

- Aggressive tempo
- · Building rhythm
- Shoulders over hips posture
- Lowering center of mass before takeoff

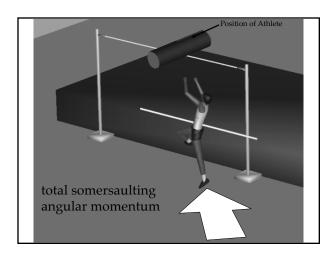
0

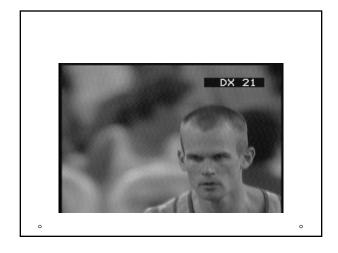
Takeoff Conditions

- · High height of center of mass at takeoff
- High vertical velocity of the center of mass at the end of the takeoff phase


Takeoff Considerations


- Parallel vs Perpendicular attack angles
- Fast vs Slow approach speeds at takeoff
- Peaking in front, on top, behind bar
- Forward vs Lateral somersaulting momentum


Total Somersaulting Momentum


- What is
 - o Forward somersaulting momentum
 - o Lateral somersaulting momentum
 - o Why is the combination of these two momentums important?

0 0

Bar Clearance Considerations

- · Position at takeoff
- · Somersaulting momentum
- · Rotation about bar

Bar Clearance Considerations

- Taking off too close or too far from the bar
- Insufficient amount of somersaulting angular momentum
 Moment of Inertia
 - *...if all parts of the body are kept close to the center of gravity, the moment of inertia of the body is small and the speed of rotation is increased* (Dapena, 1992)
- Poor arching
 - o Short vs long body/limbs
- · Bad timing of the arching/un-arching process

(Dapena, 1992)

0

Thank You!

- John Rembao
- Contact Information

 JohnR@D1Athletics.com
 www.D1Athletics.com