1 THE NEED FOR SPEED

- Mike Holman
- MARIAN UNIVERSITY, Indianapolis
- USATF Staff
- 2016 Olympic Games, Rio
- 2015 World Championships, Beijing
- 2013 World Championships, Moscow
- 2012 Olympic Games, London
- 2011 World Championships, Dague, S. Korea
- 2008 Beijing Olympic Games
- In Charge of Video Analysis for Men's & Women's Track & Field Team Training Sessions and Competition
- 2006 World Indoor TF Championships Staff-Moscow, Russia
- 1999 Jr. Pan Am TF Staff
- 17 Years Directing Elite Athlete & Coaching Camps at the Olympic Training Center-Chula Visa, CA

2 Max Velocity

40m-80m

- Posture
- Knee to Knee @ Touchdown
- Support Phase
- Drive Phase-Increase SF or Increase SL
- Recovery Phase-Pull Heel to Glute
- Prep Phase- Drive Thigh Down & Back
- Most Important Factor in Sprinting-Determines all other Phases
- Should be Trained All Year
- Ability to Limit Deceleration
- Arms
- Dorsi Flexed Foot
- Eccentric Contraction-key, do not want to collapse
- Grab Track/Drive Thigh Down & Back

3 **Eccentric Phase**

• The eccentric phase of ground support begins when the foot of the support leg first touches the ground and continues until the hips are directly over the foot. This is a phase of 'loading' or absorption of the body's weight. Here the muscles are using eccentric actions to create forces.

4 Concentric Phase

• The concentric phase of ground support begins at the end of the eccentric phase and continues until the support foot leaves the ground. This is a phase of 'unloading' or propelling of the body's weight into the next step. Here the energy created during the eccentric phase is utilized.

5 Ground Contact Time

- The eccentric phase contributes greatest to max velocity
- The concentric phase contributes greatest to acceleration (lower velocity)
- Horizontal velocity is changed via the type of acceleration or deceleration which occurs during ground contact.

6 Step Length Factors

- Anthropometric Factors-use stride length calculator
- Strength and Power
- Elasticity
- Neuromuscular Integration
- Mechanical Efficiency
- Dynamic Mobility
- Training Age

7 Anthropometric Factors-SL

- Leg Length
- Body Composition
 - The leaner the sprinter, the greater should be the effective step length.

8 Leg Length

9 Leg Length

- Leg Length has been used for many years as a means of projecting optimal step length in sprinting.
 - 2.30 to 2.45 x leg length for women
 - 2.50 to 2.70 x leg length for men

10 Strength and Power -SL

• Maximum strength contributes to joint stabilization at high velocities

- Contributes to elastic force production
 - Greatest contribution of maximum strength at high velocity
- As velocity increases strength is less of a factor

11 Elasticity -SL

- Energy from a falling body is absorbed by a contracted muscle
 - Forcibly lengthens muscle
 - Muscle rebounds with greater force
 - Connective tissue is the elastic part of the system. This means that max strength is even more important. The muscle is almost static so ATP is not required.
 - When utilized it contributes to greater SL without compromising technique

12 Neuromuscular Integration -SL

- Neuromuscular sequencing
 - The specific sequential firing order of muscles involved in an activity.
- Neuromuscular timing
 - The anticipation of a forthcoming action and the sending of the proper message to the brain to fire those muscles
 - Very important in setting up system for elastic force production
- Neuromuscular coordination
 - Coordinating the agonist and antagonistic muscles to work in concert together.

13 Mechanical Efficiency -SL

Closely related to Neuromuscular Integration and Coordination

14 SL Factors which can be positively influenced through training

- Strength and Power
- Neuromuscular integration and coordination
- Mechanical efficiency
- Elasticity
- Dynamic mobility

15 Strength-SF

 Agonist and antagonist muscle groups must be balanced in strength to decelerate moving limbs and reaccelerate them.

- Eliminates dead time between recovery phase and preparation for support
- Maximum strength levels must be high enough to minimize absorption of force on ground contact.

16 Power-SF

- The greater the muscular power, the greater the angular acceleration and velocity of the limb
- Muscles must have high power output to express forces elastically upon ground contact
 - This minimizes 'braking' forces which decelerate the body

17 Relationship between SL & SF

- SF seems to be the larger limiting factor in Sprint Performance
 - Mann points out that most of the better sprinters improve their performance via SF
- Both SF & SL are improved with strength
- SL & SF are generally inversely related
 - Sprinting is an optimization problem regarding these factors.

18 Manual Measurement

- Step Length
 - Run through cinder track, sawdust, or flour
- Step Frequency
 - # of foot strikes/Time for # of strikes

19 General Considerations in Max Speed

- Arm Action
 - Used for balance
 - Initiate action of the legs-Mann disputes this idea, but leading coaches believe it 100%
 - Elbow angles vary (60-140 degrees) front to back
 - Emphasis on backward drive of arms

20 Arm Action- angles and range

- 21 Leg Action
 - Preparation for Support
- 22 Support Phase Eccentric
- 23 Concentric Phase of Support

- Foot is in full support under C of MGluts continue to extend the thigh
- Do not push on the track
- 24 Recovery Phase
- 25 Recovery Phase
- 26 Recovery Phase
- 27 Recovery
- 28 Recovery Phase
 - Support foot breaks contact with ground
 - Extension of hip, knee, and ankle joints is incomplete
 - Complete extension contributes to loss of velocity
 - Excessive extension is seen in athlete who lacks strength and coordination

29 Speed as a Skill

- Posture
- Starting
- Driving
- Transition
- Striking
- Hitting
- Floating and Flying
- 30 Strike
- 31 Strike
- 32 Strike
- 33 Strike
- 34 Strike
- 35 Speed Maintenance

80m-100m

- Hot Track
- Special Endurance I and Special Endurance II

- Looser/Faster
- Increase SF
- Arms are Critical-Mann?
- Bolt-Last 20m, Help or Hurt? He was the most relaxed throughout all the rounds and the finals.

36 Fault-Reason-Correction

- Understand the fault or the error
 - View within the context of the whole movement and the whole event
- Carefully consider the possible reasons
 - Poor diagnosis can lead to poor corrections
 - Can lead to further problems
- Apply one corrective measure at a time

1 THE NEED FOR SPEED

Transition to Max Vel. 20-30m

- Mike Holman
- MARIAN UNIVERSITY, Indianapolis
- USATF Staff
- 2016 Olympic Games, Rio
- 2015 World Championships, Beijing
- 2013 World Championships, Moscow
- 2012 Olympic Games, London
- 2011 World Championships, Dague, S. Korea
- 2008 Beijing Olympic Games
- In Charge of Video Analysis for Men's & Women's Track & Field Team Training Sessions and Competition
- 2006 World Indoor TF Championships Staff-Moscow, Russia
- 1999 Jr. Pan Am TF Staff
- 17 Years Directing Elite Athlete & Coaching Camps at the Olympic Training Center-Chula Visa, CA

2 Transition

20m-40m

- Line-up/Drive Taller
- Posture
- Backside to Frontside/Step Over Mechanics
- Never Compromise the Technical Component
- SL/SF 1:1
- Knee to Knee @ Touchdown
- Final Move to Max Velocity
- Arms
- Dorsi-flexed Foot

3 Transition

- The link between acceleration and max velocity running (Backside Mechanics/Front Side Mechanics)
- Change in mechanics of force application
 - Pushing emphasis decreases
 - Pulling emphasis increases

- Higher heel recovery
- Ankle steps over knee of support leg
- 4 <a>Transition
- 5 Transition
- 6 Transition
- 7 Transition
- 8 <a>Transition
- 9 <a>Transition