Prevention of Stress Fractures in Young Runners

Adam Tenforde, MD
PM&R Sports Fellow
Stanford University
January 31, 2015

Objectives

– Provide background on risk factors for stress fracture injuries and low bone density in runners
– Discuss injury prevention strategies in young runners

Introduction

Stress fractures account for up to 20% of all sports injuries.

Stress Fractures

Failure of skeleton to withstand *submaximal* forces acting over *time*

Incidence

In track-and-field athletes, stress fractures account for 34% injuries in women and 24% in men.

Growing Up Today Study

Epidemiology of Stress Fractures in High School Runners

- Study evaluating stress fractures across high school sports found that girls were more likely to fracture than boys
- Girls’ and boys’ cross country were two of the top three highest rates of stress fracture

Risk Factors

Female Athlete Triad

- Energy imbalance
- Menstrual dysfunction
- Low bone mineral density

ACSM Position Statement, 2007

Male Athlete Triad?

- Case reports suggest male athletes may have a combination of disordered eating, hypogonadotrophic hypogonadism, and impaired bone health
- These parallel characteristics of the Triad in female athletes, although the prevalence of this condition is likely lower in male athletes

Parallels of Female Athlete Triad in Male Athletes

- Low energy availability with or without an eating disorder
- Hypothalamic functional amenorrhea
- Low bone mineral density
- Hypogonadotrophic hypogonadism

Sports Influence Bone Health

- Athletes who participate in weight bearing sports have ~10% greater bone mass than non-athletes.
- The Triad can predispose to low bone mass.

Influence of Bone Loading

- Wolff’s Law describes how bone adapts to mechanical loading
- Muscle-bone unit theory in children

The Challenge

- 90% of peak bone density should be attained by age 18 in females and age 20 in males.

Bone Mineral Density

Early Exposure

Early puberty represents the most critical time to participate in sports that emphasize weight-bearing and high-impact exercises.
26% of final bone mass is acquired between ages 11.5-13.5 in girls and 13-15 in boys.

Can We Modify Bone Development in Young Athletes?

Can we modify bone development in young athletes? In young athletes, PMR Journal, 2011

Types of Loading Activities

High-impact
- Gymnastics, karate, volleyball and other jumping sports

Multidirectional-impact
- Soccer, basketball, raquet games, speed skating

Repetitive low-impact
- Distance running

Non-impact
- Swimming, cycling
High Impact and Multidirectional Impact Loading

High-impact and multidirectional-impact loading activities enhance bone density and bone geometry, particularly in anatomic locations directly loaded by those sports.

Ferry et al. Bone geometry between elite female soccer players and swimmers. J Bone Miner Metab, 2011
Nikander et al. Femoral neck structure in athletes subjected to different loading modalities. J Bone Miner Res, 2005
Nikander et al. Cross-sectional geometry of tibia in athletes subjected to different exercise. Osteoporosis Int, 2010

Low-Impact Loading

Participation in long-distance running may lead to modest improvements in BMD and geometry over non-impact sports and sedentary individuals; however, the results are not consistent.

Non-Impact Loading

• Participation in non-impact sports (cycling, swimming) may be associated with lower BMD and impaired bone strength than sedentary controls.

Running

6000 loading cycles on each leg per typical training session
Peak impact forces on one leg reach 2.2-2.6 times BW
Acceleration and deceleration occurs primarily in the vertical direction near the sagittal plane

Running vs. Soccer

1000-1500 loading cycles per training session
Peak impact forces on one leg range from 2.0-5.0 times BW
Stopping, cutting, and jumping produce forces from all directions

Role of Bone Loading

Bone exhibits cellular desensitization to a continuous mechanical load, exhibiting a threshold above which additional strain exposures do not benefit bone.

Burr et al. Effects of biomechanical stress on bones. Bone, 2002

Prevention of Stress Fractures?

Background

Higher impact forces and higher rates of force development create stiffer, stronger, more fracture resistant bones.

Milgrom et al. In-vivo strain measurements to evaluate the strengthening potential of exercises on the tibial bone. JBJS, 2000

Calbet et al. High femoral bone mineral content and density in male football (soccer) players. MSSE, 2001

Israeli Military Study

Recruits with a history of playing ball sports for 2 years had 46-84% reduction in stress fractures.

vs

Runners had the same incidence as sedentary controls.

Milgrom et al. Using bone’s adaptation ability to lower the incidence of stress fractures. AJSM, 2000

Ball Sports Study

- Retrospective study of 156 elite female and 118 elite male distance runners, ages 18-44
- Detailed evaluation of previous participation in soccer or basketball

Fredericson et al. Effects of ball sports on future risk of stress fracture in runners. CJSM, 2005

Ball Sports Study

- Previous participation in ball sports was associated with a 50% reduction in developing a stress fracture in both sexes.
- Dose-dependent with a reduction of 13% per year played.
- Females with menstrual irregularities did not confer benefits from ball sports.
Current Research
Identifying Modifiable Risk Factors For Stress Fractures in Young Runners

Tenforde, et al. MSSE 2013
Identifying Sex-Specific Risk Factors for Stress Fractures in Adolescent Runners

ADAM S. TENFORDE1, LAUREN C. SAYRES1, MARY LIZ McCURDY1, KRISTEN L. SANAMI1, and MICHAEL FREDERICSON2

Methodology

- Study design: prospective observational cohort in 748 high school athletes
- Method: baseline questionnaire and monitoring for prospective stress fracture injuries (SFI)
- Outcome: relationship of baseline characteristics to development of SFI

Prospective Stress Fractures

- 5.4% of females (N=23)
- 4.0% males (N=11)

Results: Female Stress Fractures

<table>
<thead>
<tr>
<th>Variable</th>
<th>Univariate</th>
<th>Multivariate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fracture history</td>
<td>6.94 (16.49; 14.84)</td>
<td>-</td>
</tr>
<tr>
<td>Previous participation in running</td>
<td>4.21 (0.46; 10.08; 3.15)</td>
<td>-</td>
</tr>
<tr>
<td>Bone mineral density (mg/dl)</td>
<td>2.76 (0.11; 5.46)</td>
<td>2.07 (0.12; 6.45)</td>
</tr>
<tr>
<td>Low bone density (55 years old males)</td>
<td>3.90 (0.44; 9.35)</td>
<td>2.49 (0.45; 6.17)</td>
</tr>
<tr>
<td>Current amenorrhea</td>
<td>1.96 (0.84; 4.53)</td>
<td>-</td>
</tr>
<tr>
<td>Number of periods in the previous year</td>
<td>0.89 (0.03; 9.06)</td>
<td>-</td>
</tr>
<tr>
<td>Prior diagnosis of anemia or hepatitis</td>
<td>5.34 (0.24; 110.98)</td>
<td>-</td>
</tr>
<tr>
<td>Prior participation in sports</td>
<td>1.00 (1.26; 7.38)</td>
<td>-</td>
</tr>
</tbody>
</table>

Results: Male Stress Fractures

<table>
<thead>
<tr>
<th>Variable</th>
<th>Univariate</th>
<th>Multivariate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fracture history</td>
<td>2.66 (0.99; 6.97)</td>
<td>0.73 (0.28; 1.93)</td>
</tr>
<tr>
<td>Previous participation in baseball</td>
<td>0.19 (0.05; 0.70)</td>
<td>0.18 (0.05; 0.49)</td>
</tr>
<tr>
<td>Seasons of competition during follow-up</td>
<td>2.37 (1.10; 5.11)</td>
<td>2.15 (1.12; 4.06)</td>
</tr>
<tr>
<td>Pylometrics</td>
<td>2.39 (0.95; 6.82)</td>
<td>-</td>
</tr>
<tr>
<td>Mileage, per added 10 km of running per week</td>
<td>1.16 (0.97; 1.39)</td>
<td>-</td>
</tr>
<tr>
<td>Mile time, per 10 seconds faster</td>
<td>1.13 (0.95; 1.33)</td>
<td>-</td>
</tr>
<tr>
<td>Height, per additional inch</td>
<td>1.14 (0.95; 1.37)</td>
<td>-</td>
</tr>
</tbody>
</table>
Conclusions

- Both young females and males are susceptible to stress fracture injuries.
- In females, risk factors associated include prior fracture, low BMI, late menarche and sports emphasizing leanness.
- Males who previously fracture are at increased risk for stress fractures, whereas prior basketball may be protective.

Identifying Sex-Specific Risk Factors For Low Bone Mineral Density in Adolescent Runners

Methodology

- Study design: cross-sectional evaluation of risk factors to low bone mineral density (BMD) Subjects: 136 athletes (N=94 females, N=42 males)
- Method: online questionnaire and food frequency questionnaire to characterize risk factors for low BMD and collection of bone density using DXA.
- Outcome: association of baseline characteristics to lower BMD values. Identify clinical risk factors for low BMD (defined BMD \(z \)-score \(\leq -1 \))

Results

- 13 of 91 girls and 9 of 42 boys met criteria for low BMD for age (BMD \(z \)-score \(\leq -1 \))
- Body composition (higher lean mass, BMI, and increased android to gynoid fat mass ratio (A:G)) were all associated with higher BMD values
- Participation in basketball, soccer, and plyometrics were each associated with higher BMD, although each did not reach statistical significance (\(P > 0.05 \))

Results: Female risk factors for lower BMD

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>LS BMD (n=91)</th>
<th>TRLJ BMD (n=91)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lean mass (per SD)</td>
<td>-0.10</td>
<td>-0.06</td>
</tr>
<tr>
<td>Single SD</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Lean mass (per SD)</td>
<td>-0.13</td>
<td>-0.13</td>
</tr>
<tr>
<td>Android to gynoid fat mass ratio</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>Closure SD (per SD)</td>
<td>-0.36</td>
<td>-0.36</td>
</tr>
<tr>
<td>Current SD (per SD)</td>
<td>-1.98</td>
<td>-1.98</td>
</tr>
<tr>
<td>Lean mass (per cm)</td>
<td>-0.10</td>
<td>-0.10</td>
</tr>
<tr>
<td>Lean mass (per cm)</td>
<td>-0.20</td>
<td>-0.20</td>
</tr>
<tr>
<td>Lean mass (per kg)</td>
<td>-0.15</td>
<td>-0.15</td>
</tr>
</tbody>
</table>

Results: Male risk factors for lower BMD

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>LS BMD (n=42)</th>
<th>TRLJ BMD (n=42)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI (z)-score</td>
<td>0.17</td>
<td>0.46</td>
</tr>
<tr>
<td>Belief that “runner is”</td>
<td>-0.96</td>
<td>-0.46</td>
</tr>
<tr>
<td>factor(^{**})</td>
<td>(P < 0.05)</td>
<td>(P < 0.05)</td>
</tr>
<tr>
<td>Android Gynoid Fat Ratio</td>
<td>0.25</td>
<td>(P < 0.001)</td>
</tr>
</tbody>
</table>
Results: Risk factors for low bone mass for age

<table>
<thead>
<tr>
<th>Sex</th>
<th>Risk Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Girls</td>
<td>BMI ≤ 17.5 kg/m², menstrual irregularity and history of fracture</td>
</tr>
<tr>
<td>Boys</td>
<td>BMI ≤ 17.5 kg/m², belief “thinner is faster”</td>
</tr>
</tbody>
</table>

Conclusions

- Both female and male adolescent runners are at risk for impaired bone health
- In girls, risk factors for lower BMD include lower A:G ratio, current menstrual irregularity and history of fracture, delayed menarche and drinking less milk
- Boys who believe “thinner is faster” and have lower BMI have lower BMD

Conclusions

- Clinical predictors of low BMD (defined BMD z-score ≤ -1):
 - Girls: menstrual irregularities with history of fracture OR BMI ≤ 17.5 kg/m²
 - Boys: belief “thinner is faster” OR BMI ≤ 17.5 kg/m²
- We can use these findings to identify and target treatment for young runners at risk for low BMD

Influence of calcium and vitamin D on stress fracture prevention

Tenforde, Fredericson, et al. PMR Journal, 2010

Relationship of Calcium and Vitamin D in the Prevention of Stress Fracture Injuries in the Young Athlete

Tenforde, Fredericson, et al. PMR Journal, 2010

Calcium and vitamin D supplementation reduce incidence of stress fractures

In an 8-week trial of supplementation with 2000 mg calcium and 800 IU of vitamin D in female military recruits, there was a 20% reduction in fractures.

Tenforde, Fredericson, et al. PMR Journal, 2010

Nutritional factors influence change in bone density and stress fracture risk

Fracture risk decreased by 62% per additional cup of skim milk consumed per day

Nieves, Sainani, et al. Nutritional factors that influence change in bone density and stress fracture risk among young female cross-country runners. PMR Journal, 2010

Continued..

- Women who consumed less than 800 mg of calcium per day had nearly 6 times the rate of stress fracture than women who consumed more than 1500 mg of calcium.

Summary

Sports participation with emphasis on jumping and impact loading confers greatest bone benefits. Cross-over effects of ball sports may protect against future stress fractures. Triad must be addressed to confer these benefits. Calcium and vitamin D are both important to optimize bone health.

Application to Young Runners

- Recognition of Female Athlete Triad Risk Factors especially changes in menstrual health
- Ensure adequate nutrition including calcium and vitamin D
- Encourage variety of sports participation in young runners in addition to running, including ball sports

Female Athlete Triad

- Most female runners should have her first menstrual period by age 15
- Irregular/cessation of menstrual periods or changes with intense training may suggest inadequate energy availability
- All runners who sustain a stress fracture should be screened for Triad risk factors

Nutrition Considerations

- All runners should be encouraged to consumed calcium-rich foods and ensure target calcium and vitamin D intake recommendations
- Adequate energy availability is important for overall health of both female and male runners
RDA: Calcium

Female and male runners ages 9-18 require 1300 mg of calcium daily

Committee to Review Dietary Reference Intakes for Vitamin D and Calcium, Food and Nutrition Board, Institute of Medicine, 2010

RDA: Vitamin D

Children and adolescent female and male runners require 600 IU of vitamin D daily

Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes for calcium and Vitamin D. National Academy Press, 2010

Impact Loading Sports Improve Skeletal Health

- Sports specialization should be avoided in young athletes
- Sports involving jumping and multidirectional loading may be beneficial for optimizing skeletal health and prevention of future stress fractures

Ball Sports

- Ball sports and other jumping, multidirectional loading sports are associated with improved bone health
- Two or more years of ball sports during adolescence have been observed to reduce future stress fracture risk

Prehabilitation to prevent stress fractures and promote bone health

- Applying principles of high impact, ground reaction forces may result in stronger and fracture resistant bones in the setting of optimal nutrition and when performed at a young age

Prehabilitation to prevent stress fractures and promote bone health

Jumping activities involve high ground reaction forces delivered at a rapid rate. Ground reaction forces >3.5x body weight with peak force <0.1 seconds may be most effective stimuli.

DeFiori, et al.

Overuse Injuries and Burnout in Youth Sports:
A Position Statement from the American Medical Society for Sports Medicine

John P. DeFiori, MD,* Holly J. Benjamin, MD,† Joel Bremner, MD, MPH,‡ Andrew Gregory, MD,* Neera Jogani, MD,§ Greg L. Landry, MD,|| and Anthony Luke, MD, MPH**

(Clin J Sport Med 2014;24:3–20)

DeFiori, et al.

Prevalence of overuse injury varies, highest in runners (68%)
The strongest risk factor for future overuse injury is prior injury
Early sports-specialization may not lead to future success in running
Preparticipation screening and evaluation for risk factors is critical

DeFiori, et al.

Position statement by AMSSM is available for free online:

The Healthy Runner Project:
translating running science into clinical practice

Acknowledgements

• Research team:
 – Dr. Kristin Sainani, Lauren Sayres, Mary Liz McCurdy, Dr. Hervé Collado, Dr. Shelley MacDonald, and John McGuire
• Dr. Laura Bachrach
• Funding support from MedScholars, ERF New Investigator Award and the Medical Student Research Grant
• Participants, parents, coaches, school administrators and others who made this study possible

Thank You!